Cryogenic thermometer

WIKA data sheet SP 05.25

Applications

- Extremely-low temperature measurements
- Applications with liquid hydrogen (LH₂)
- Cryogenic tanks
- Cryogenic pipelines
- Hydrogen liquefaction plants

Special features

- Innovative design with high accuracy
- Usable with all relevant thermometers
- Approved for applications in hazardous areas

Thermometer in cryo design

Description

Due to the global use of hydrogen, extremely low-temperature measurement during transport and storage is gaining an ever-greater relevance. With the cryo design, WIKA provides a suitable option for all relevant temperature measuring instruments for this demanding application.

In laboratory trials, resistance thermometers (Pt1000) and thermocouples (type E) were tested for their suitability in cryogenic applications. The special design of the cryogenic thermometer features a high accuracy of ± 3 Kelvin at -253 °C [-423 °F] as well as high reproducibility.

The test data from laboratory investigations served as the basis for calculating new polynomials for Pt1000 resistance thermometers in the range of -258 ... -200 °C [-432 ... -328 °F] which are used in the configuration of WIKA transmitters.

Thermometers suitable for cryo design

For detailed information on the individual thermometers – explosion protection in particular – see the data sheets:

Thermometer description	RTD	Data sheet	TC	Data sheet
For additional thermowell	TR10-B	TE 60.02	TC10-B	TE 65.02
Process version	TR12-B	TE 60.17	TC12-B	TE 65.17
Cable thermometers	TR40	TE 60.40	TC40	TE 65.40
Threaded thermometer	TR10-C	TE 60.03	TC10-C	TE 65.03
Flanged resistance thermometer	TR10-F	TE 60.06	TC10-F	TE 65.06
Operation without thermowell	TR10-H	TE 60.08	TC10-H	TE 65.08

Further thermometer versions in cryo design on request

Construction of the cryo design

Resistance thermometers

In sheathed resistance thermometers the flexible part of the probe consists of a mineral-insulated cable (MI cable). It features a stainless steel outer sheath, which contains the insulated internal leads, embedded within a high-density ceramic compound. The measuring resistor is connected directly to the internal leads of the sheathed cable.

The graphic shows the construction of a standard probe.

The cryo design is different to standard versions through the special construction of the probe tip and a special measuring resistor.

Thermocouples

In sheathed thermocouples the flexible part of the probe consists of a mineral-insulated cable (MI cable). It features a metal outer sheath, which contains the insulated internal leads, embedded within a high-density ceramic compound. Sheathed thermocouples, due to their flexibility and the small diameters that are possible, can be used in areas that are difficult to access.

The graphic shows the construction of a standard probe.

The cryo design is different to standard versions through the special construction of the probe tip.

Sensor

Measuring element					
Connection method					
Single element	■ Pt1000, 1 x 4-wire ■ Thermocouple type E				
Validity limits of the class accuracy in accordance with EN 60751					
Pt1000	±3 K	-253200 °C [-423328 °F]			
	Class B	-200 +50 °C [-432 +122 °F] ¹⁾			
Validity limits of the class accuracy in accordance with IEC 60584-1					
Туре Е	±3 K	-253200 °C [-423328 °F]			
	Class 2	-20040 °C [-32840 °F]			
	Class 1	-40 +250 °C [-40 +482 °F]			

¹⁾ Measuring range to +250 °C [+482 °F] on request

Measuring insert

Thin-film measuring resistor Pt1000 2)

Diameter Ø d in mm [in]	Index per DIN 43735	Tolerance in mm	Sheath material	
			Standard design	Recessed soldering lugs
3 [0.12]	-	3	1.4571	1.4571
6 [0.24]	60	6	■ 1.4571 ■ 316 L	1.4571
6 [0.24 in] (with sleeve)	-	8	1.4571	1.4571
8 [0.31]				

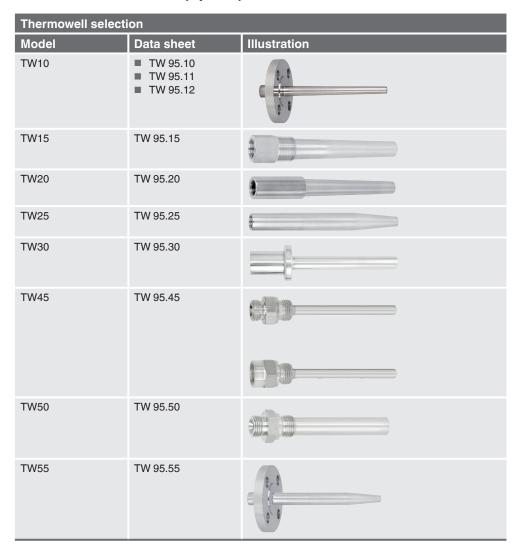
²⁾ Bendable from 50 mm [1.97 in] of measuring insert length

Sheathed thermocouple type E

Measuring insert diameter Ø d in mm [in]	Index per DIN 43735	Tolerance in mm	Sheath material
1.5 [0.06]	-	1.5 ±1%	Stainless steel: 1.4571
3 [0.12]	30	3 -0.5	Ni alloy: Alloy 600
6 [0.24]	60	6 -0.1	
6 [0.24] (with sleeve)	-	8 -0.1	Ni alloy: Alloy 600
8 [0.31]			
8 [0.31]	80	8 -0.1	Ni alloy: Alloy 600

Thermocouple cable

To bridge the distance between thermocouple and evaluation instrumentation, special connection cables must be used with thermocouples. The internal leads of the thermocouple cable are manufactured from the original material of the type E thermocouple and are used for thermometers in cryo design with accuracy class 1. It should be noted that the potential errors of thermocouple and connection lead add to each other.


Colour code of thermocouple cable and compensating cable

Transmitter

For applications down to -258 °C [-432 °F], the T32 digital temperature transmitter with HART® protocol can be used in head-mounted and rail-mounted versions. The upper end of the measuring range of +50 °C (+122 °F) when using the Pt1000 was defined to enable the best possible measurement accuracy, due to the available number of characteristic curve programmable points. On customer request, the transmitter measuring range can be extended up to +250 °C (+482 °F).

Thermowell selection (option)

Special thermowells on request

Thermowell materials

For cryogenic applications, we recommend using austenitic stainless steels such as 1.4571, 316/316L and nickel-based materials. Welding procedure tests for standard ranges of use are available. In cryogenic areas, explicit proof of capability is unusual.

© 10/2022 WIKA Alexander Wiegand SE & Co. KG, all rights reserved. The specifications given in this document represent the state of engineering at the time of publishing. We reserve the right to make modifications to the specifications and materials.

WIKA

Page 5 of 5

Tel. +49 9372 132-0 Fax +49 9372 132-406 info@wika.de

www.wika.com